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Abstract

This paper discusses the application of a few parallel preconditioning techniques, which are collected in a recently developed
suite of codes Parallel Algebraic Recursive Multilevel Solver (pARMS), to tackling large-scale sparse linear systems arising
from real-life applications. In particular, we study the effect of different algorithmic variations and parameter choices on the
overall performance of the distributed preconditioners in pARMS by means of numerical experiments related to a few realistic
applications. These applications include magnetohydrodynamics, nonlinear acoustic field simulation, and tire design.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Viable solutions of modern computational problems
that arise in science and engineering should efficiently
utilize the combined power of multi-processor com-
puter architectures and effective algorithms. For many
large-scale applications, solving large sparse linear
systems is the most intensive computational task.
The important criteria for a suitable solver include
numerical efficiency, robustness, and good parallel
performance. However, many existing parallel solvers
are either designed for a particular problem class,
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such as symmetric positive definite linear systems,
or are very application- and data format-specific.
There is a limited selection of “general-purpose”
distributed-memory iterative solution implementa-
tions. Among the better known packages that contain
such implementations are PETSc[1] and hypre [6].
While the former focuses mainly on domain decom-
position preconditioning techniques, the latter has
a wide range of preconditioners including various
distributed incomplete LU factorizations and an al-
gebraic multigrid method. In this paper, we consider
the Parallel Algebraic Recursive Multilevel Solver
(pARMS)[18], which is a suite of distributed-memory
iterative accelerators and preconditioners targeting
the solution of general sparse linear systems. It adopts
a general framework of distributed sparse matrices
and relies on the solution of the resulting distributed
Schur complement systems. We will discuss some is-
sues related to the performance of pARMS on parallel
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computers for a few sparse linear systems that arise in
realistic applications.Section 2gives an introduction
to the framework of distributed sparse linear systems,
whereasSection 3explains the ARMS method as
the underpinning for the preconditioners in pARMS,
followed by a discussion of the issues pertinent to
their parallel implementations.Section 4contains nu-
merical experiments arising from three realistic appli-
cations. Finally,Section 5presents some concluding
remarks.

2. Distributed sparse linear systems

The framework of distributed linear systems[23,26]
provides an algebraic representation of the irregularly
structured sparse linear systems arising in the Domain
Decomposition methods[30]. A typical distributed
system arises, e.g., from a finite element discretiza-
tion of a partial differential equation on a certain do-
main. To solve such systems on a distributed memory
computer, it is common to partition the finite element
mesh and assign a cluster of elements representing a
physical sub-domain to one processor. Each processor
then assembles only the local equations restricted to
its assigned cluster of elements. In the case where the
linear system is given algebraically, a graph contain-
ing vertices that correspond to the rows of the linear
system can be partitioned. For both cases, the gen-
eral assumption is that each processor holds a set of
equations (rows of the global linear system) and the
associated unknown variables.

Fig. 1shows a ‘physical domain’ viewpoint of a dis-
tributed sparse linear system, for which a vertex-based

Fig. 1. A local view of a distributed sparse linear system.
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Fig. 2. The corresponding local matricesAi andXi.

partitioning has been used without overlapping the
unknowns. As is often done, we will distinguish be-
tween three types of variables: (1) interior variables
are those that are coupled only with local variables
by the equations; (2) inter-domain interface variables
are those coupled with nonlocal (external) variables as
well as local variables; and (3) external interface vari-
ables are those variables that belong to neighboring
processors and are coupled with the above types of lo-
cal variables. The local equations can be represented
as shown inFig. 2. Note that these equations need not
be contiguous in the original system. The matrix rep-
resented inFig. 2can be viewed as a reordered version
of the equations associated with a local numbering of
the equations/unknowns pairs.

The rows of the matrix assigned to a certain pro-
cessor have been split into two parts: alocal matrix
Ai which acts only on the local variables and aninter-
facematrix Xi which acts only on the external inter-
face variables. These external interface variables must
be first received from neighboring processor(s) be-
fore a distributed matrix-vector product can be com-
pleted. Thus, each local vector of unknownsxi(i =
1, . . . , p) is also split into two parts: the sub-vector
ui of interior variables followed by the sub-vector
yi of inter-domain interface variables. The right-hand
side bi is conformally split into the sub-vectorsfi

andgi,

xi =
(
ui

yi

)
, bi =

(
fi

gi

)
. (1)

The local matrix Ai residing in processori is
block-partitioned according to this splitting, leading to

(2)
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With this, the equations assigned to processori can be
written as follows:(

Bi Fi

Ei Ci

)(
ui

yi

)
+
(

0∑
j∈Ni

Eijyj

)
=
(

fi

gi

)
.

(3)

The termEijyj is the contribution to the local equa-
tions from the neighboring sub-domain numberj and
Ni is the set of sub-domains that are neighbors to
sub-domaini. The sum of these contributions, seen
on the left side of(3), is the result of multiplying
the interface matrixXi by the external interface vari-
ables. It is clear that the result of this product will
affect only the inter-domain interface variables as is
indicated by the zero in the upper part of the second
term on the left-hand side of(3). For practical imple-
mentations, the sub-vectors of external interface vari-
ables are grouped into one vector calledyi,ext and the
notation∑
j∈Ni

Eijyj ≡ Xiyi,ext

will be used to denote the contributions from external
variables to the local system(3). In effect, this rep-
resents a local ordering of external variables to write
these contributions in a compact matrix form. With
this notation, the left-hand side of(3) becomes

wi = Aixi + Xiyi,ext. (4)

Note that wi is also the local part of a global
matrix-vector productAx in which x is a dis-
tributed vector which has the local vector comp-
onentsxi.

2.1. Additive Schwarz preconditioning

Preconditioners for distributed sparse linear systems
are best designed from the local data structure de-
scribed above. Additive Schwarz procedures are the
simplest preconditioners available. In the framework
of distributed linear systems, seeFig. 1, it can be
viewed that there is a “minimal” amount of overlap
between the sub-domains. When an additive Schwarz
procedure is used as a preconditioner, the local resid-
ual vector is updated by a global iterative solver. The
resulting local residual vector is then used as the local

right-hand side. Of course, an exchange of data must
precede the local residual vector update, such that each
sub-domain receives from its neighbors the latest val-
ues of its external interface variables and sends to the
neighbors the latest values of its inter-domain interface
variables. Once the latest values of the external inter-
face variables and the local right-hand side are avail-
able, the additive Schwarz procedure can be used to
find a correction to the local solution. In simple terms,
the additive Schwarz preconditioners can be stated as
follows:

Algorithm 2.1 (Additive Schwarz with minimum
overlap).

1. Update local residualri = (b − Ax)i.
2. SolveAiδi = ri.
3. Exchangeδi among neighboring sub-domains.
4. Update local solutionxi = xi + δi.

This loop is executed on each processor simultane-
ously. Exchange of information takes place in Line 1,
where the (global) residual is updated. Note that the
residual is “updated” in that only they-part of the
right-hand side is changed. The local systemsAiδi =
ri can be solved in three ways: (1) by a (sparse) direct
solver, (2) by using a standard preconditioned Krylov
solver, or (3) by performing a forward–backward so-
lution associated with an accurate ILU (e.g., ILUT)
preconditioner. Experiments show that option (3) or
option (2) with only a very small number of inner steps
(e.g., 5) is quite effective. In particular, a multilevel
ILU type procedure could be used to solveAiδi = ri
approximately[3,4,21,28,29].

2.2. Schur complement techniques

Schur complement techniques refer to methods
which iterate on the inter-domain interface unknowns
only, implicitly using interior unknowns as interme-
diate variables. These techniques form the basis of
several preconditioners that will be used inSection 4.
Schur complement systems are derived by eliminat-
ing the variablesui from (3). Extracting from the first
equationui = B−1

i (fi − Fiyi) yields, upon substitu-
tion in the second equation

Siyi +
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′

i, (5)
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whereSi is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (6)

Eq. (5) for all sub-domainsi (i = 1, . . . , p) con-
stitute a global system of equations involving only
the inter-domain interface unknown vectorsyi. This
global reduced system has a natural block structure
related to the inter-domain interface points in each
sub-domain:


S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...

Ep1 Ep−1,2 . . . Sp







y1

y2

...

yp


 =




g′
1

g′
2
...

g′
p


 .

(7)

The diagonal blocks in this system, the matricesSi, are
dense in general. The off-diagonal blocksEij , which
are identical with those involved in(3), are sparse.

The system(7) can be written asSy = g′, where
y consists of all inter-domain interface variables
y1, y2, . . . , yp stacked into a long vector. The matrix
S is the “global” Schur complement matrix. One can
exploit approximate solvers (see, e.g.,[20]) for the
reduced system(7) to develop preconditioners for the
original (global) distributed system. Once the global
Schur complement system(7) is (approximately)
solved, each processor will compute theu-part of
the solution vector (see(1)) by solving the system
Biui = fi − Eiyi obtained by substitution from(3).
In summary, a Schur complement iteration may be
expressed by the following algorithm:

Algorithm 2.2 (Schur complement iteration).

1. Forward: compute local right-hand sidesg′
i = gi −

EiB
−1
i fi.

2. Solve global Schur complement systemSy= g′.
3. Backward: substitute to obtainui, i.e., solveBiui =

fi − Eiyi.

For convenience,(5) is rewritten as a preconditioned
system with the diagonal blocks:

yi + S−1
i

∑
j∈Ni

Eijyj = S−1
i [gi − EiB

−1
i fi]. (8)

This can be viewed as a block-Jacobi preconditioned
version of the Schur complement system(7). The sys-

tem (8), which couples local and external unknowns,
can be solved by a GMRES-like accelerator, requiring
a solve withSi at each step (see, e.g.,[24]).

3. Parallel algebraic recursive multilevel solver

Multilevel Schur complement techniques available
in pARMS[18] are based on techniques which exploit
block independent sets, such as those described in[27]
for the sequential ARMS preconditioner.

3.1. ARMS as the underpinning for preconditioners
in pARMS

The sequential version of ARMS is rooted in Mul-
tilevel ILU type techniques which exploitindependent
sets. An independent set is a set of unknowns that are
not coupled to each other. Such orderings transform
the original linear system into a system of the form(

B F

E C

)(
u

y

)
=
(

f

g

)
, (9)

whereB is a diagonal matrix. Such independent sets
have been extensively used in devising both direct and
iterative solution methods for sparse linear systems,
see, for example,[11,13,14,21].

The concept of independent sets has been general-
ized toblocksor groups[28,29]. A group-independent
set is a collection of subsets (blocks) of unknowns such
that there is no coupling between unknowns of any
two different groups (blocks)[28]. Unknowns within
the same group (block) may be coupled. When the un-
knowns of the group-independent sets are labeled first,
the matrixA will have the block structure(9) in which
theB block is block diagonal instead of diagonal. An
illustration of a matrix permuted with two different
group-independent set orderings is given inFig. 3.

In ARMS, the following block factorization is com-
puted ‘approximately’(

B F

E C

)
≈
(

L 0

EU−1 I

)(
U L−1F

0 A1

)
, (10)

whereLU ≈ B andA1 ≈ C − (EU−1)(L−1F).
Conceptually, the ARMS factorization algorithm is

quite simple to describe because of its recursive nature.
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(a) (b)

Fig. 3. Group-independent set reorderings of a 9-point matrix: (a) small groups (fine-grain) and (b) large groups (coarse-grain).

In a nutshell, the ARMS procedure consists of essen-
tially two steps: first, obtain a group-independent set
and reorder the matrix in the form(9); second, obtain
an ILU factorizationB ≈ LU for B and approxima-
tions to the matricesL−1F,EU−1, andA1. The process
is repeated recursively on the matrixA1, which may
now be renamedA, until a selected number of levels
is reached. At the last level, a simple ILUT factoriza-
tion, possibly with pivoting, or an approximate inverse
method can be applied.Fig. 4sketches the ARMS pro-
cedure, in which darker shaded areas represent Schur
complements that are formed consecutively.

The consecutive Schur complement matricesA1 re-
main sparse but will get denser as the number of lev-
els increases, so small elements are dropped in the
block factorization to maintain sparsity. The matrices
EU−1, L−1F (or their approximations) need not be
saved. They are needed only to compute an approx-
imation to A1. Once this is accomplished, they are
discarded to save storage. Subsequent operations with
L−1F and EU−1 are performed usingU,L and the
blocksE andF .

Fig. 4. A step of the ARMS procedure to form consecutive Schur complements.

Recursive multilevel strategies of various types can
be defined. Essentially, a preconditioning step amounts
to an approximate solve with the factorization(9).
Such a solve consists of three steps. The first step will
solve with the first matrix on the right-hand side of
(10). This will yield a new right-hand side for the sec-
ond part of(9), which isg1 = g−EU−1f . Then the re-
sulting Schur complement systemA1y = g1 is solved
(iteratively). Finally, a back-substitution step is per-
formed to obtain the variableu = U−1[f − L−1Fy].
It is not specified how the Schur complement system
A1y = g1 is to be solved—and this provides a source
of many possible variations. Recursivity can clearly be
exploited: if another level in the ARMS factorization
is available, we can repeat the process anddescendto
the next level, solve (recursively), andascendback to
the current level. When the last level is reached, one
can solve the system by an ILUT-preconditioned GM-
RES iteration[22] or a simple solve with the ILUT
factors (without iteration).

Now let us apply a full-fledged ARMS procedure
as a local solver in the construction of a global Schur
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Fig. 5. Classification of unknowns when ARMS is used as a local
solver in the pARMS setting.

complement preconditioner. For simplicity, consider
a one-level ARMS acting locally in each sub-domain
in the pARMS setting. InFig. 5, solid thick lines
determine the boundaries of sub-domains. The local
group-independent sets are constructed only on those
local unknowns that are decoupled from external un-
knowns by producing local separators (dashed-dotted
lines inFig. 5). The inter-domain interface unknowns
(dashed lines inFig. 5) are a priori assigned to the
Schur complement by the ARMS procedure. Thus in
each sub-domain, the local Schur complement ma-
trix A1, produced in the first level of ARMS reduc-
tion, will act on the inter-domain interface variables
plus the separator variables, termed thelocal inter-
facevariables. In other words, the Schur complement
variablesyi, i = 1, . . . p (see(7)), are the union of
the inter-domain interface variables and the variables
separating the group-independent sets. We denote by
expanded Schur complementthe system involving the
matrix A1 that acts on the inter-domain and local in-
terface unknowns. Upon solving the global system
for all the variablesy, the interior variables are ob-
tained without communication by back-substitution in
ARMS within each processor.

The paper[27] describes a scalar version of ARMS.
The implementation, written in C, is fully recursive
and makes efficient use of storage. The paper also
presents a number of comparisons with other existing
solution methods, both iterative and direct. ARMS is
often far superior to ILUT, which is often used as a
benchmark for similar comparisons. Its performance
is also often better than a standard direct solution

package such as SuperLU[9], specifically for large
matrices.

3.2. Diagonal shifting in distributed preconditioning

Extremely ill-conditioned linear systems are diffi-
cult to solve by iterative methods. A possible source
of difficulty is due to the ineffective preconditioning
of such systems. The preconditioner may become un-
stable (i.e., has large norm of its inverse). To stabi-
lize the preconditioner, a common technique is to shift
the matrixA by a scalar and use this shifted matrix
A + αI during preconditioning, see, e.g.,[19]. Be-
cause the matrix is shifted, its preconditioner might be
a rather accurate approximation ofA + αI. It is also
more likely to be stable. However, for large shift val-
ues, the preconditioner might not represent accurately
the original matrixA. So the choice of the shift value
is important and leads to a trade-off between accuracy
and stability of the preconditioner. We have consid-
ered this trade-off in[12,25]. In [7], a strong corre-
lation between stability of the preconditioner and the
size of E = log(‖(LU)−1‖inf ) is shown and is sug-
gested as a practical means of evaluating the quality
of a preconditioner. We can inexpensively compute
Eα = log(‖(LU)−1e‖1), wheree is a vector of all ones
andLU is an incomplete LU factors ofA + αI. The
estimateEα can be used in choosing a shift value: if
this estimate is large, then we increase shift value. Be-
fore choosing a shift valueα, we first scale the coef-
ficient matrix so that all the entries in the matrix have
new values that are no larger than one. The scaling
process is done by two steps. In the first step, we go
through the rows of the matrix one by one. Each row is
scaled by dividing all its entries by the 2-norm of the
row. In the second step, we go through the columns
of the matrix and scale each column in a similar way.
When the scaling process is finished, we may simply
choose, for example,α = 1 and add it to the main
diagonal. This will ensure that the new matrix is diag-
onally dominant, which may not, however, accurately
represent the original one. In practice, we can choose
anα value between 0 and 1. Once theα value is cho-
sen, we need to recompute (adjust) the preconditioner.
Note that efficient techniques for updating a precon-
ditioner when a new shift value is provided is beyond
the scope of this paper. One such technique has been
outlined in[8].
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In pARMS, we have adapted a shifting technique for
a distributed representation of linear system. Specifi-
cally, we perform the shifting and normEα calculation
in each processor independently. Thus, each proces-
sor i can have a different shift value depending on the
magnitude of itsEiα. Such an implementation is moti-
vated by the observation that shifting is especially im-
portant for diagonally nondominant rows, which can
be distinguished among other rows by a local proce-
dure. In each processor, the choice of shift value is
described by the following pseudo-code:

Algorithm 3.1 (Matrix shifting).

1. Select initial shiftα ≥ 0 : B = A + αI.
2. Compute parallel preconditionerM for B.
3. Calculate localEα.
4. If Eα is large,

4.1. Increase shiftα;
4.2. Adjust preconditioner.

Note that in Line 4.2 ofAlgorithm 3.1, depending
on the type of preconditioner, the adjustment oper-
ation may be either local or global. For example,
additive Schwarz type preconditioners may perform
adjustments independently per processor, whereas
all the processors may need to participate in the ad-
justment of a Schur complement preconditioner. In
addition, Lines 3–6 may need to be repeated several
times.

4. Numerical experiments

In this section we describe a few realistic appli-
cations, which give rise to large irregularly struc-
tured linear systems that are challenging for iterative
solution methods. Such applications as ultrasound
simulation, magnetohydrodynamics, and tire design
are considered. The linear systems arising in ultra-
sound simulation were generated using Diffpack,
which is an object-oriented environment for scientific
computing, see[10,17]. The magnetohydrodynamics
application has been generously provided by Azzed-
dine Soulaimani and Ridha Touihri from the “Ecole
de Technologie Superieure, Université du Québec”,
and the linear systems arising in tire design have
been supplied by John T. Melson of Michelin Amer-

icas Research and Development Corporation. All the
numerical experiments have been performed on the
IBM SP system at the Minnesota Supercomputing
Institute. Each computing node (of type Nighthawk)
of the IBM SP system has four 222 MHz Power3
processors sharing 4 GB of memory and all the nodes
are connected through a high performance switch.
We have tested several preconditioning techniques
available in our pARMS code when solving the linear
systems iteratively. As the criterion for convergence,
we have always required that the residual is reduced
by a factor of 106.

Before describing the applications, we introduce
some notation for the sake of convenience and for
helping readers to understand the parallel precondi-
tioners to be used.

• add ilut denotes an additive Schwarz procedure
described inSection 2.1. The local system is solved
approximately either by a given number of GMRES
inner iterations preconditioned with ILUT, or by
directly using ILUT as an approximate solver.

• add ilu(k) is similar toadd ilut but ILU(k)
is used as a preconditioner or an approximate solver
instead of ILUT.

• add arms is similar toadd ilut but ARMS is
used as a preconditioner or an approximate solver
for local systems.

• sch gilu0 denotes a method that is based on
approximately solving the expanded Schur comple-
ment system with a global ILU(0)-preconditioned
GMRES. The ILU(0) preconditioning requires a
global order (referred to as a schedule in[15])
to traverse the equations. For this purpose, global
multicoloring of processors is a widely used tech-
nique. Since the global Schur complement is never
assembled or redistributed in our implementation
[24], it can inherit the global multicoloring of the
sub-domains (one color per sub-domain corre-
sponding to a processor).

• no its is a suffix that can be added to the above
preconditioners to indicate that no inner GMRES
iterations are used. For the additive Schwarz type
preconditioning, this means that ILUT, ILU(k), or
ARMS are used as an approximate local solver.
For sch gilu0, global ILU(0) is used in the
forward–backward solve on the entire (global)
Schur complement.
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• sh is a suffix that can be added to the above precon-
ditioners to indicate that they use shifted original
matrix for the preconditioner construction.

4.1. Simulation of 3D nonlinear acoustic fields

The propagation of 3D ultrasonic waves in a nonlin-
ear medium can be modeled by the following system
of nonlinear PDEs:

∇2ϕ − 1

c2

∂2ϕ

∂t2

+ 1

c2

∂

∂t

[
(∇ϕ)2 + B/A

2c2

(
∂ϕ

∂t

)2

+ b∇2ϕ

]
= 0,

(11)

p − p0 = ρ0
∂ϕ

∂t
, (12)

where the primary unknowns are the velocity poten-
tial ϕ and pressurep. For the involved parameters,c
is the speed of sound,ρ0 the density,p0 the initial
pressure,b the absorption parameter andB/A the non-
linearity parameter. The above mathematical model is
to be supplemented with suitable initial and boundary
conditions.

The numerical scheme consists of using finite
elements in the spatial discretization and finite differ-
ences for the temporal derivatives. At each time level,

Fig. 6. Outer iterations (left) and timing results (right) for the (fixed-size) ultrasound problem.

the discretization of(11)gives rise to a system of non-
linear algebraic equations involvingϕ from three con-
secutive time levels. We apply Newton–Raphson iter-
ations for the nonlinear system. We refer to[5] and the
references therein for more information on the mathe-
matical model and the numerical solution method. As
a particular numerical test case, we use a 3D domain:
(x, y, z) ∈ [−0.004,0.004] × [−0.004,0.004] ×
[0,0.008]. On the face ofz = 0, there is a circular
transducer with radiusr = 0.002, i.e., the pressurep
is given within the circle. On the rest of the boundary
we use a nonreflective boundary condition.

We consider solving the linear system during the
first Newton–Raphson iteration at the first time level.
The linear system has 185,193 unknowns and the
sparse matrix contains 11,390,625 nonzero entries.
Fig. 6 presents the iteration numbers (left) and total
solution times, including preconditioner construction
(right), needed for solving this linear system. Two
preconditioning techniques,sch gilu0 no its
andadd arms no its have been tested on various
numbers of processors.

It is observed thatsch gilu0 no its precondi-
tioning consistently leads to a faster convergence than
add arms no its. Both methods, however, show
almost no increase in iterations when the number of
processors is increased. The timing results are slightly
better for sch gilu0 no its preconditioner ex-
cept for the 16-processor case.
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4.2. Simulation of magnetohydrodynamic (MHD)
flow

In [18], we have described the solution of a rather
hard problem which arises from simulating MHD
flows. The mathematical model describing the flow
consists of the Maxwell equations coupled with the
incompressible Navier–Stokes equations. Here, we
provide only a brief outline of a sample problem
along with its solution and study the solution process
when shifting techniques are used. The conservative
MHD system is modeled by the Maxwell equations,
written as:

∂B
∂t

− ∇ × (u × B) + η∇ × (∇ × B) + ∇q = 0,

(13)

∇ · B = 0, (14)

where η,B,u and q are, respectively, the magnetic
diffusivity coefficient, magnetic induction field, veloc-
ity field, and the scalar Lagrange multiplier for the
magnetic-free divergence constraint. In fully coupled
magnetohydrodynamics, this system is solved along
with the incompressible Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u − ν∇2u + ∇p = f, (15)

∇ · u = 0, (16)

wherep, ν andf are, respectively, pressure, kinematic
viscosity, and body force. The coupling between the
two systems is through the body forcef = (1/µ)(∇ ×
B) × B, which represents the Lorentz (Laplace) force
due to the interaction between the current densityj =
(1/µ)(∇ × B) and the magnetic field, whereµ is the
magnetic permeability.

It is uncommon to solve the fully coupled problem
described byEqs. (13)–(16)along with their coupling
via the body forces, because this usually requires
an excessive amount of memory. Instead, segregated
approaches are often applied which alternatively
solve the two coupled problems until a certain con-
vergence criterion is satisfied. For time-dependent
problems, these coupling iterations are embedded
into the time-stepping procedure. For a few details
on this problem, its discretization, and the segregated
solution procedure, we refer to[32].

Here, we only consider solving the linear systems
arising from the Maxwell equations. In order to do
this, a pre-set periodic induction fieldu is used in
Maxwell’s equation (13). The physical region is the
3D unit cube [−1,1]3 and the discretization uses a
Galerkin-least-squares discretization. The magnetic
diffusivity coefficient is η = 1. The sparse matrix
of the resulting linear system (denoted by MHD1)
hasn = 485,597 unknowns and 24,233,141 nonzero
entries. The functionq in (13) corresponds to La-
grange multipliers, which arise from imposing the
magnetic-free divergence constraint. Its gradient
should be zero at steady-state. Though the actual
right-hand side was supplied, we preferred to use an
artificially generated one in order to check the accu-
racy of the process. A random initial guess was taken.
Little difference in performance was seen when the
actual right-hand and a zero vector initial guess were
used instead. For the details on the values of the input
parameters see[18].

We observed that all the methods without inner
iterations experienced stagnation for the MHD1 prob-
lem. Additive Schwarz (add arms no its) with
or without overlap does not converge for any num-
ber of processors while the Schur global ILU(0)
(sch gilu0 no its) stagnates when executed on
more than nine processors. On four and nine pro-
cessors,sch gilu0 no its converges in 188 and
177 iterations, respectively. On the IBM SP system,
this amounts to 2223.43 and 1076.27 s, respectively.
This is faster than 2372.44 and 1240.23 s when five
inner iterations are applied and the number of outer
iterations decreases to 119 and 109 on four and nine
processors, respectively.Fig. 7, which presents the
outer iteration numbers (left) and the timing results
(right) for sch gilu0 using five inner iterations, in-
dicates that even a few iterations on the global Schur
complement lead to convergence for all the tested
processor numbers. Using more inner iterations, al-
though beneficial for the convergence rate, may be-
come prohibitively expensive in terms of execution
time. This positive effect can be explained by the fact
that the Schur complement system is computed with
good accuracy.Fig. 7 also shows the usage of the
shift valueα = 0.1 in thesch gilu0 sh precon-
ditioner construction. For this problem, shifting does
not help convergence and results in larger numbers
of outer iterations. Since a good convergence rate
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Fig. 7. Outer iteration numbers (left) and timing results (right) for the MHD1 problem with and without diagonal shifting.

is achieved without shifting of the original matrix,
the shift value applied insch gilu0 sh may be
too large and the resulting preconditioner may not
be a good approximation of the original matrix. The
number of nonzeros insch gilu0 sh, however,
is smaller than insch gilu0. Therefore, the con-
struction ofsch gilu0 sh is always cheaper, and
sch gilu0 sh appears to be competitive for small
processor numbers.

4.3. Linear systems arising in tire design

Tire static equilibrium computation is based on a
3D finite element model with distributed loads (see,
e.g., [2]). The computation involves minimizing the
potential energyΠ(u) with respect to the displacement
field u = (u1, u2, u3) subject to nonlinear boundary
conditions, which change the symmetry of a tire. The
equilibrium equations of the model are obtained by
setting the variation�Π(u) to 0, or equivalently

∇Π(u) = 0.

The Jacobian matrix of the equilibrium equations is
obtained by finite difference approximations. The dis-
tributed load is scaled by a (loading) parameterλ, and
asλ varies the static equilibrium solutions trace out a
curve. The difficulty of the finite element problems and
concomitant linear systems varies considerably along

this equilibrium curve, as well as within the nonlinear
iterations to compute a particular point on this curve.

In [31], the problems of varying matrix characteris-
tics are considered. All the problems pose a challenge
for iterative methods since the treatment of station-
ary solutions of rotation makes the systems extremely
ill-conditioned during the nonlinear convergence pro-
cess. It has been observed that an acceptable conver-
gence was achievedonlywhen a rather large shift was
applied to the diagonal of the scaled matrix. The ma-
trix was scaled to have rows and columns 2-norm unity
(seeSection 3.2) to stabilize the preconditioner. The
size of the shift is very important: while making the
preconditioner more stable, large shift values cause
the preconditioner to be a poor approximation of the
original matrix.

Table 1shows the results of a few experiments, in
which we use preconditioners from pARMS on a sam-
ple linear system, medium tire modelM, with 49,800
unknowns and, on average, 84 nonzeros per row in the

Table 1
Solution of tire modelM on four processors using different parallel
iterative methods (no local iterations are used)

Method αfinal maxi Eiα=0 Iter Time

add ilu(2) 0.1 45 475 175.19
add ilut 0.1 116 476 116.55
sch gilu0 0.2 146 566 99.99
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matrix. In distributed preconditioners of pARMS, a
shift α is chosenautomatically: starting with the zero
shift, the preconditioner is reconstructed with a new
shift (augmented by 0.1) if the estimateEiα of the pre-
conditioner inverse is large (greater than 7). InTable 1,
we list the final value ofα, the maximumEiα among
all the processors whenα = 0, the numberIter of
iterations needed for converge, and the preconditioner
application timeTime spent when running on four
processors. Metis[16] has been used for the partition-
ing of the problem among processors.

Note that thesch gilu0 preconditioner is more
ill-conditioned initially and thus causes two augmen-
tations of the shift value. Forsch gilu0, the larger
number of outer iterations (566) may be attributed to
the resulting preconditioner being much sparser than
the other preconditioners tested. However, this differ-
ence in the iteration numbers sustain the timing ad-
vantage of a sparser preconditioner despite the com-
munication overhead incurred bysch gilu0.

Due to the difficulty of this problem, which is also
unpredictably affected by partitioning, the conver-
gence was not observed consistently on any processor
numbers. For example, no convergence has been
achieved on eight processors for moderate values ofα.

5. Concluding remarks

In this paper, we have studied the performance of a
recently developed pARMS suite of codes in several
realistic applications. For all the problems considered,
it is beneficial to use preconditioners based on Schur
complement techniques, enhanced by a local multi-
level procedure. In addition, a few inner iterations on
the global Schur complement secure convergence for
a problem arising from a magnetohydrodynamics ap-
plication.

We have also proposed an implementation of matrix
shifting in the framework of distributed linear systems.
It allows a shift value to be assigned independently
in each sub-domain. An automatic procedure for the
shift value selection has also been implemented to
stabilize the distributed preconditioner and overcome
stagnation.

To conclude, we would like to underline the flexi-
bility of the pARMS framework which allows to select
among many available options, by varying the input

parameters. This feature is important as it allows users
to adapt to the difficulties encountered when solving
real-world problems.
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